[toc]

提到网络协议栈结构,最著名的当属 OSI 七层模型,但是 TCP/IP 协议族的结构则稍有不同,它们之间的层次结构有如图对应关系:

2022-05-16-22-24-50.png

可见 TCP/IP 被分为 4 层,每层承担的任务不一样,各层的协议的工作方式也不一样,每层封装上层数据的方式也不一样:

  • 应用层:应用程序通过这一层访问网络,常见 FTP、HTTP、DNS 和 TELNET 协议;
  • 传输层:TCP 协议和 UDP 协议;
  • 网络层:IP 协议,ARP、RARP 协议,ICMP 协议等;
  • 网络接口层:是 TCP/IP 协议的基层,负责数据帧的发送和接收。

本笔记自底向上分层次对 TCP/IP 的各协议做介绍。

主要知识点:

  • IP 地址
  • 域名
  • MAC 地址
  • 端口号
  • 封装和分用

起源

上世纪 70 年代,随着计算机技术的发展,计算机使用者意识到:要想发挥计算机更大的作用,就要将世界各地的计算机连接起来。但是简单的连接是远远不够的,因为计算机之间无法沟通。因此设计一种通用的“语言”来交流是必不可少的,这时 TCP/IP 协议就应运而生了。

TCP/IP(Transmission Control Protocol/Internet Protocol)是传输控制协议和网络协议的简称,它定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。

TCP/IP 不是一个协议,而是一个协议族的统称,里面包括了 IP 协议、ICMP 协议、TCP 协议、以及 http、ftp、pop3 协议等。网络中的计算机都采用这套协议族进行互联。

IP 地址

网络上每一个节点都必须有一个独立的 IP 地址,通常使用的 IP 地址是一个 32bit 的数字,被 . 分成 4 组,例如,255.255.255.255 就是一个 IP 地址。有了 IP 地址,用户的计算机就可以发现并连接互联网中的另外一台计算机。

在 终端输入 ifconfig -a 命令查看自己的 IP 地址 (inet 地址):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
shiyanlou:project/ $ ifconfig -a
eth0 Link encap:以太网 硬件地址 02:42:c0:a8:2a:04
inet 地址:192.168.42.4 广播:192.168.42.255 掩码:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 跃点数:1
接收数据包:568 错误:0 丢弃:0 过载:0 帧数:0
发送数据包:736 错误:0 丢弃:0 过载:0 载波:0
碰撞:0 发送队列长度:0
接收字节:64277 (64.2 KB) 发送字节:4434558 (4.4 MB)

lo Link encap:本地环回
inet 地址:127.0.0.1 掩码:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 跃点数:1
接收数据包:0 错误:0 丢弃:0 过载:0 帧数:0
发送数据包:0 错误:0 丢弃:0 过载:0 载波:0
碰撞:0 发送队列长度:1000

域名

用 12 位数字组成的 IP 地址很难记忆,在实际应用时,用户一般不需要记住 IP 地址,互联网给每个 IP 地址起了一个别名,习惯上称作域名。

域名与计算机的 IP 地址相对应,并把这种对应关系存储在域名服务系统 DNS(Domain Name System) 中,这样用户只需记住域名就可以与指定的计算机进行通信了。

常见的域名包括 comnetorg 三种顶级域名后缀,除此之外每个国家还有自己国家专属的域名后缀(比如我国的域名后缀为 cn)。目前经常使用的域名诸如百度(www.baidu.com)、Linux 组织(www.lwn.net)等等。

我们可以使用命令 nslookup 或者 ping 来查看与域名相对应的 IP 地址,由于实验楼网络限制,我们可以使用 ping github.com(如果 github 也 ping 不通,那么可以使用 ping labfile.oss.aliyuncs.com

MAC 地址

MAC(Media Access Control)地址,或称为物理地址硬件地址,用来定义互联网中设备的位置。

TCP/IP 层次模型中,网络层管理 IP 地址,链路层则负责 MAC 地址。因此每个网络位置会有一个专属于它的 IP 地址,而每个主机会有一个专属于它 MAC 地址。

端口号

IP 地址是用来发现和查找网络中的地址,但是不同程序如何互相通信呢?这就需要端口号来识别了。如果把 IP 地址比作一间房子,端口就是出入这间房子的门。真正的房子只有几个门,但是端口采用 16 比特的端口号标识,一个 IP 地址的端口可以有 65536(即:$2^{16}$)个之多!

服务器的默认程序一般都是通过人们所熟知的端口号来识别的。例如,对于每个 TCP/IP 实现来说,SMTP(简单邮件传输协议)服务器的 TCP 端口号都是 25FTP(文件传输协议)服务器的 TCP 端口号都是 21TFTP(简单文件传输协议)服务器的 UDP 端口号都是 69。任何 TCP/IP 实现所提供的服务都用众所周知的 1-1023 之间的端口号。这些人们所熟知的端口号由 Internet 端口号分配机构(Internet Assigned Numbers Authority,IANA)来管理。

常用协议 端口号
SSH 22
FTP 20 && 21
Telnet 23
SMTP 25
TFTP 69
HTTP 80
SNMP 161
Ping 使用 ICMP,无具体端口号

封装和分用

封装:当应用程序发送数据的时候,数据在协议层次当中自顶向下通过每一层,每一层都会对数据增加一些首部或尾部信息,这样的信息称之为协议数据单元(Protocol Data Unit,缩写为 PDU),在分层协议系统里,在指定的协议层上传送的数据单元,包含了该层的协议控制信息和用户信息。如下图所示:

  • 物理层(一层)PDU 指数据位(Bit)
  • 数据链路层(二层)PDU 指数据帧(Frame)
  • 网络层(三层)PDU 指数据包(Packet)
  • 传输层(四层)PDU 指数据段(Segment)
  • 第五层以上为数据(data)

2022-05-16-22-41-20.png

分用:当主机收到一个数据帧时,数据就从协议层底向上升,通过每一层时,检查并去掉对应层次的报文首部或尾部,与封装过程正好相反。

RFC

RFC(Request for Comment) 文档是所有以太网协议的正式标准,并在其官网上面公布,由 IETF 标准协会制定。大量的 RFC 并不是正式的标准,出版的目的只是为了提供信息。RFC 的篇幅不一,从几页到几百页不等。每一种协议都用一个数字来标识,如 RFC 3720 是 iSCSI 协议的标准,数字越大意味着 RFC 的内容越新或者是对应的协议(标准)出现的比较晚。

所有的 RFC 文档都可以从网络上找到,其官网为 IETF。在网站上面可以通过分类以及搜索快速找到目标协议的 RFC 文档。目前在 IETF 网站上面的 RFC 文档有数千个,但是我们不需要全部掌握,在工作或学习中如果遇到可以找到对应的解释,理论与实际结合会有更好地效果,单纯阅读 RFC 的效果一般。