1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
| 100%|██████████| 20795/20795 [00:00<00:00, 44614.48it/s] /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for classifier.1.weight. classifier.1.weight receives a shape [1280, 1000], but the expected shape is [1280, 12]. warnings.warn(("Skip loading for {}. ".format(key) + str(err))) /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1263: UserWarning: Skip loading for classifier.1.bias. classifier.1.bias receives a shape [1000], but the expected shape is [12]. warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
------------------------------------------------------------------------------- Layer (type) Input Shape Output Shape Param # =============================================================================== Conv2D-160 [[1, 3, 224, 224]] [1, 32, 112, 112] 864 BatchNorm2D-107 [[1, 32, 112, 112]] [1, 32, 112, 112] 128 ReLU6-1 [[1, 32, 112, 112]] [1, 32, 112, 112] 0 Conv2D-161 [[1, 32, 112, 112]] [1, 32, 112, 112] 288 BatchNorm2D-108 [[1, 32, 112, 112]] [1, 32, 112, 112] 128 ReLU6-2 [[1, 32, 112, 112]] [1, 32, 112, 112] 0 Conv2D-162 [[1, 32, 112, 112]] [1, 16, 112, 112] 512 BatchNorm2D-109 [[1, 16, 112, 112]] [1, 16, 112, 112] 64 InvertedResidual-1 [[1, 32, 112, 112]] [1, 16, 112, 112] 0 Conv2D-163 [[1, 16, 112, 112]] [1, 96, 112, 112] 1,536 BatchNorm2D-110 [[1, 96, 112, 112]] [1, 96, 112, 112] 384 ReLU6-3 [[1, 96, 112, 112]] [1, 96, 112, 112] 0 Conv2D-164 [[1, 96, 112, 112]] [1, 96, 56, 56] 864 BatchNorm2D-111 [[1, 96, 56, 56]] [1, 96, 56, 56] 384 ReLU6-4 [[1, 96, 56, 56]] [1, 96, 56, 56] 0 Conv2D-165 [[1, 96, 56, 56]] [1, 24, 56, 56] 2,304 BatchNorm2D-112 [[1, 24, 56, 56]] [1, 24, 56, 56] 96 InvertedResidual-2 [[1, 16, 112, 112]] [1, 24, 56, 56] 0 Conv2D-166 [[1, 24, 56, 56]] [1, 144, 56, 56] 3,456 BatchNorm2D-113 [[1, 144, 56, 56]] [1, 144, 56, 56] 576 ReLU6-5 [[1, 144, 56, 56]] [1, 144, 56, 56] 0 Conv2D-167 [[1, 144, 56, 56]] [1, 144, 56, 56] 1,296 BatchNorm2D-114 [[1, 144, 56, 56]] [1, 144, 56, 56] 576 ReLU6-6 [[1, 144, 56, 56]] [1, 144, 56, 56] 0 Conv2D-168 [[1, 144, 56, 56]] [1, 24, 56, 56] 3,456 BatchNorm2D-115 [[1, 24, 56, 56]] [1, 24, 56, 56] 96 InvertedResidual-3 [[1, 24, 56, 56]] [1, 24, 56, 56] 0 Conv2D-169 [[1, 24, 56, 56]] [1, 144, 56, 56] 3,456 BatchNorm2D-116 [[1, 144, 56, 56]] [1, 144, 56, 56] 576 ReLU6-7 [[1, 144, 56, 56]] [1, 144, 56, 56] 0 Conv2D-170 [[1, 144, 56, 56]] [1, 144, 28, 28] 1,296 BatchNorm2D-117 [[1, 144, 28, 28]] [1, 144, 28, 28] 576 ReLU6-8 [[1, 144, 28, 28]] [1, 144, 28, 28] 0 Conv2D-171 [[1, 144, 28, 28]] [1, 32, 28, 28] 4,608 BatchNorm2D-118 [[1, 32, 28, 28]] [1, 32, 28, 28] 128 InvertedResidual-4 [[1, 24, 56, 56]] [1, 32, 28, 28] 0 Conv2D-172 [[1, 32, 28, 28]] [1, 192, 28, 28] 6,144 BatchNorm2D-119 [[1, 192, 28, 28]] [1, 192, 28, 28] 768 ReLU6-9 [[1, 192, 28, 28]] [1, 192, 28, 28] 0 Conv2D-173 [[1, 192, 28, 28]] [1, 192, 28, 28] 1,728 BatchNorm2D-120 [[1, 192, 28, 28]] [1, 192, 28, 28] 768 ReLU6-10 [[1, 192, 28, 28]] [1, 192, 28, 28] 0 Conv2D-174 [[1, 192, 28, 28]] [1, 32, 28, 28] 6,144 BatchNorm2D-121 [[1, 32, 28, 28]] [1, 32, 28, 28] 128 InvertedResidual-5 [[1, 32, 28, 28]] [1, 32, 28, 28] 0 Conv2D-175 [[1, 32, 28, 28]] [1, 192, 28, 28] 6,144 BatchNorm2D-122 [[1, 192, 28, 28]] [1, 192, 28, 28] 768 ReLU6-11 [[1, 192, 28, 28]] [1, 192, 28, 28] 0 Conv2D-176 [[1, 192, 28, 28]] [1, 192, 28, 28] 1,728 BatchNorm2D-123 [[1, 192, 28, 28]] [1, 192, 28, 28] 768 ReLU6-12 [[1, 192, 28, 28]] [1, 192, 28, 28] 0 Conv2D-177 [[1, 192, 28, 28]] [1, 32, 28, 28] 6,144 BatchNorm2D-124 [[1, 32, 28, 28]] [1, 32, 28, 28] 128 InvertedResidual-6 [[1, 32, 28, 28]] [1, 32, 28, 28] 0 Conv2D-178 [[1, 32, 28, 28]] [1, 192, 28, 28] 6,144 BatchNorm2D-125 [[1, 192, 28, 28]] [1, 192, 28, 28] 768 ReLU6-13 [[1, 192, 28, 28]] [1, 192, 28, 28] 0 Conv2D-179 [[1, 192, 28, 28]] [1, 192, 14, 14] 1,728 BatchNorm2D-126 [[1, 192, 14, 14]] [1, 192, 14, 14] 768 ReLU6-14 [[1, 192, 14, 14]] [1, 192, 14, 14] 0 Conv2D-180 [[1, 192, 14, 14]] [1, 64, 14, 14] 12,288 BatchNorm2D-127 [[1, 64, 14, 14]] [1, 64, 14, 14] 256 InvertedResidual-7 [[1, 32, 28, 28]] [1, 64, 14, 14] 0 Conv2D-181 [[1, 64, 14, 14]] [1, 384, 14, 14] 24,576 BatchNorm2D-128 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-15 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-182 [[1, 384, 14, 14]] [1, 384, 14, 14] 3,456 BatchNorm2D-129 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-16 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-183 [[1, 384, 14, 14]] [1, 64, 14, 14] 24,576 BatchNorm2D-130 [[1, 64, 14, 14]] [1, 64, 14, 14] 256 InvertedResidual-8 [[1, 64, 14, 14]] [1, 64, 14, 14] 0 Conv2D-184 [[1, 64, 14, 14]] [1, 384, 14, 14] 24,576 BatchNorm2D-131 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-17 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-185 [[1, 384, 14, 14]] [1, 384, 14, 14] 3,456 BatchNorm2D-132 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-18 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-186 [[1, 384, 14, 14]] [1, 64, 14, 14] 24,576 BatchNorm2D-133 [[1, 64, 14, 14]] [1, 64, 14, 14] 256 InvertedResidual-9 [[1, 64, 14, 14]] [1, 64, 14, 14] 0 Conv2D-187 [[1, 64, 14, 14]] [1, 384, 14, 14] 24,576 BatchNorm2D-134 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-19 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-188 [[1, 384, 14, 14]] [1, 384, 14, 14] 3,456 BatchNorm2D-135 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-20 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-189 [[1, 384, 14, 14]] [1, 64, 14, 14] 24,576 BatchNorm2D-136 [[1, 64, 14, 14]] [1, 64, 14, 14] 256 InvertedResidual-10 [[1, 64, 14, 14]] [1, 64, 14, 14] 0 Conv2D-190 [[1, 64, 14, 14]] [1, 384, 14, 14] 24,576 BatchNorm2D-137 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-21 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-191 [[1, 384, 14, 14]] [1, 384, 14, 14] 3,456 BatchNorm2D-138 [[1, 384, 14, 14]] [1, 384, 14, 14] 1,536 ReLU6-22 [[1, 384, 14, 14]] [1, 384, 14, 14] 0 Conv2D-192 [[1, 384, 14, 14]] [1, 96, 14, 14] 36,864 BatchNorm2D-139 [[1, 96, 14, 14]] [1, 96, 14, 14] 384 InvertedResidual-11 [[1, 64, 14, 14]] [1, 96, 14, 14] 0 Conv2D-193 [[1, 96, 14, 14]] [1, 576, 14, 14] 55,296 BatchNorm2D-140 [[1, 576, 14, 14]] [1, 576, 14, 14] 2,304 ReLU6-23 [[1, 576, 14, 14]] [1, 576, 14, 14] 0 Conv2D-194 [[1, 576, 14, 14]] [1, 576, 14, 14] 5,184 BatchNorm2D-141 [[1, 576, 14, 14]] [1, 576, 14, 14] 2,304 ReLU6-24 [[1, 576, 14, 14]] [1, 576, 14, 14] 0 Conv2D-195 [[1, 576, 14, 14]] [1, 96, 14, 14] 55,296 BatchNorm2D-142 [[1, 96, 14, 14]] [1, 96, 14, 14] 384 InvertedResidual-12 [[1, 96, 14, 14]] [1, 96, 14, 14] 0 Conv2D-196 [[1, 96, 14, 14]] [1, 576, 14, 14] 55,296 BatchNorm2D-143 [[1, 576, 14, 14]] [1, 576, 14, 14] 2,304 ReLU6-25 [[1, 576, 14, 14]] [1, 576, 14, 14] 0 Conv2D-197 [[1, 576, 14, 14]] [1, 576, 14, 14] 5,184 BatchNorm2D-144 [[1, 576, 14, 14]] [1, 576, 14, 14] 2,304 ReLU6-26 [[1, 576, 14, 14]] [1, 576, 14, 14] 0 Conv2D-198 [[1, 576, 14, 14]] [1, 96, 14, 14] 55,296 BatchNorm2D-145 [[1, 96, 14, 14]] [1, 96, 14, 14] 384 InvertedResidual-13 [[1, 96, 14, 14]] [1, 96, 14, 14] 0 Conv2D-199 [[1, 96, 14, 14]] [1, 576, 14, 14] 55,296 BatchNorm2D-146 [[1, 576, 14, 14]] [1, 576, 14, 14] 2,304 ReLU6-27 [[1, 576, 14, 14]] [1, 576, 14, 14] 0 Conv2D-200 [[1, 576, 14, 14]] [1, 576, 7, 7] 5,184 BatchNorm2D-147 [[1, 576, 7, 7]] [1, 576, 7, 7] 2,304 ReLU6-28 [[1, 576, 7, 7]] [1, 576, 7, 7] 0 Conv2D-201 [[1, 576, 7, 7]] [1, 160, 7, 7] 92,160 BatchNorm2D-148 [[1, 160, 7, 7]] [1, 160, 7, 7] 640 InvertedResidual-14 [[1, 96, 14, 14]] [1, 160, 7, 7] 0 Conv2D-202 [[1, 160, 7, 7]] [1, 960, 7, 7] 153,600 BatchNorm2D-149 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-29 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-203 [[1, 960, 7, 7]] [1, 960, 7, 7] 8,640 BatchNorm2D-150 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-30 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-204 [[1, 960, 7, 7]] [1, 160, 7, 7] 153,600 BatchNorm2D-151 [[1, 160, 7, 7]] [1, 160, 7, 7] 640 InvertedResidual-15 [[1, 160, 7, 7]] [1, 160, 7, 7] 0 Conv2D-205 [[1, 160, 7, 7]] [1, 960, 7, 7] 153,600 BatchNorm2D-152 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-31 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-206 [[1, 960, 7, 7]] [1, 960, 7, 7] 8,640 BatchNorm2D-153 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-32 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-207 [[1, 960, 7, 7]] [1, 160, 7, 7] 153,600 BatchNorm2D-154 [[1, 160, 7, 7]] [1, 160, 7, 7] 640 InvertedResidual-16 [[1, 160, 7, 7]] [1, 160, 7, 7] 0 Conv2D-208 [[1, 160, 7, 7]] [1, 960, 7, 7] 153,600 BatchNorm2D-155 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-33 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-209 [[1, 960, 7, 7]] [1, 960, 7, 7] 8,640 BatchNorm2D-156 [[1, 960, 7, 7]] [1, 960, 7, 7] 3,840 ReLU6-34 [[1, 960, 7, 7]] [1, 960, 7, 7] 0 Conv2D-210 [[1, 960, 7, 7]] [1, 320, 7, 7] 307,200 BatchNorm2D-157 [[1, 320, 7, 7]] [1, 320, 7, 7] 1,280 InvertedResidual-17 [[1, 160, 7, 7]] [1, 320, 7, 7] 0 Conv2D-211 [[1, 320, 7, 7]] [1, 1280, 7, 7] 409,600 BatchNorm2D-158 [[1, 1280, 7, 7]] [1, 1280, 7, 7] 5,120 ReLU6-35 [[1, 1280, 7, 7]] [1, 1280, 7, 7] 0 AdaptiveAvgPool2D-3 [[1, 1280, 7, 7]] [1, 1280, 1, 1] 0 Dropout-1 [[1, 1280]] [1, 1280] 0 Linear-4 [[1, 1280]] [1, 12] 15,372 =============================================================================== Total params: 2,273,356 Trainable params: 2,205,132 Non-trainable params: 68,224 ------------------------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 152.87 Params size (MB): 8.67 Estimated Total Size (MB): 162.12 -------------------------------------------------------------------------------
{'total_params': 2273356, 'trainable_params': 2205132}
|